A parameter-free stabilized finite element method for scalar advection-diffusion problems

نویسندگان

  • Pavel Bochev
  • Kara Peterson
چکیده

We formulate and study numerically a new, parameter-free stabilized finite element method for advectiondiffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with advection-diffusion test problems on a range of structured and unstructured grids confirm the excellent stability and robustness of the new method. MSC: AMS Mathematics Subject Classification (2000) numbers: 65N30, 65N12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulation and Analysis of a Parameter-Free Stabilized Finite Element Method

We present a stabilized finite element method for the scalar advection-diffusion equation, which does not require tunable mesh-dependent parameters. Stabilization is achieved by using diffusive fluxes extracted from an edge element lifting of Scharfetter-Gummel edge fluxes into the elements. Although the method is formally first-order accurate, qualitative numerical studies suggest that it occu...

متن کامل

A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems

We propose a domain decomposition method for advection-diffusionreaction equations based on Nitsche’s transmission conditions. The advection dominated case is stabilized using a continuous interior penalty approach based on the jumps in the gradient over element boundaries. We prove the convergence of the finite element solutions of the discrete problem to the exact solution and we propose a pa...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

A multiscale/stabilized finite element method for the advection–diffusion equation

This paper presents a multiscale method that yields a stabilized finite element formulation for the advection–diffusion equation. The multiscale method arises from a decomposition of the scalar field into coarse (resolved) scale and fine (unresolved) scale. The resulting stabilized formulation possesses superior properties like that of the SUPG and the GLS methods. A significant feature of the ...

متن کامل

Stabilized Galerkin methods for magnetic advection

Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and H (curl, Ω)-conforming finite elements. Mathematics Subject Classification. 65M60, 65M12. Received August 30, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012